When you fell inside of a black hole ? what's inside is ?

well , nobody knows at the moment. This is because no one has ever gone in, or observed the inside of a black hole. And if anyone did go in, they would definitely NOT be able to come back out to tell their tale. Currently, mathematical predictions and theories have come up with what happens close and outside the black hole, but only very vague ideas about what goes on inside.

black hole is a place where the laws of physics as we know them break down. Einstein taught us that gravity warps space itself, causing it to curve. So given a dense enough object, space-time can become so warped that it twists in on itself, burrowing a hole through the very fabric of reality.
You've managed to travel tens of thousands of light-years beyond the solar system. Bravely facing the depths of the great interstellar voids, you've witnessed some of the most achingly beautiful and outrageously powerful events in the universe, from the births of new solar systems to the cataclysmic deaths of massive stars. And now for your swan song, you're going big: you're about to take a dip into the inky blackness of a giant black hole .
The point where light can just escape is called the event horizon, and after you pass this point you are inside the black hole and can't get out. It is possible however to enter a black hole and not die.

As we near the black hole, there is something called the ‘event horizon’, which is better known as the point of no return. The actual meaning of an event horizon where the escape speed exceeds the speed of light: you’d have to be going faster than light (which is impossible for any bit of matter) to escape the black hole’s gravity.
The event horizon isn't a real, physical boundary. It's not a membrane or a surface. It's simply defined as a particular distance from the singularity, the distance where if you fall below this threshold, you can't get out. You know, no big deal.

This is the distance from the singularity where the gravitational pull is so extreme that nothing, not even light itself, can escape the black hole's clutches. If you were to fall below this boundary and decided you had enough of this black hole exploration business, then too bad. As hard as you fired your rockets, would find yourself no farther from the singularity. You're trapped. Doomed.
But not instantly. You have a few moments to enjoy the experience before you meet your inevitable demise, if "enjoy" is the right word. How long it takes to reach the singularity depends on the mass of the black hole. For a small black hole (a few times the mass of the sun counts as "small") you can't even blink an eye. For a giant on, at least a million times bigger than our sun, you have a handful of heartbeats to experience this mysterious corner of the universe.
But hit the singularity you must. You don't get a choice. Within the event horizon, nothing can stay still. You are forever compelled to move. And the singularity lies in all your possible futures.

Outside the black hole's event horizon, you can move in any direction in space you please. Up? Left? A little bit of both? Neither? The choice is yours. But no matter where you do (or don't) go in space, you must always travel into your future. You simply can't escape it.
Inside the event horizon of a black hole, this common-sense understanding breaks down. Here, a single point — the singularity — lies in your future. You simply must travel toward the singularity. Turn left, turn up, turn around, it doesn't matter — the singularity always remains in front of you. And you will hit that singularity in a finite amount of time.
Clock's ticking.
Inside the event horizon is where physics goes crazy. This area is where Einstein’s Laws of Relativity will cease working, and we may have to rely on quantum physics, an area not explored much. Calculations suggest that what the fabric of spacetime looks like inside a black hole depends on that particular black hole’s history. It might be turbulent, twisted, or any other number of things. One thing’s for sure, though: the tidal forces would kill you.
Indeed, light cannot escape from within a black hole, but the matter falling into a black hole can get pretty hot before it falls in. This heating is due to the fact that matter accelerates near black holes. As a result, matter emits lots of light and other radiation as it falls into a black hole.
According to most theories, within a black hole there’s something called a singularity. A singularity is what all the matter in a black hole gets crushed into. Some people talk about it as a point of infinite density at the center of the black hole, but that’s probably wrong. True, it’s what classical physics tells us is there, but the singularity is also where classical physics breaks down, so we shouldn’t trust what it says here.

The black hole itself is a singularity, a point of infinite density. But you can't see the singularity itself; it's shrouded by the event horizon, what we generally and wisely consider the "surface" of the black hole. To go farther, you must first pierce that veil.
But that mathematical situation won’t exist in reality. Others say that the singularity is actually a whole surface inside the event horizon. We just don’t know. It could be that, in real black holes, singularities don’t even exist.

Comments

Popular posts from this blog

CATHODE RAY OSCILLOSCOPE (What is CRO , its working principle and structure)?

To what extent would it take to travel to Trappist-1 framework?

The Earth moves around the Sun (Why)